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Dynamics of homogeneous bubbly flows
Part 2. Velocity fluctuations
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Direct numerical simulations of the motion of up to 216 three-dimensional buoyant
bubbles in periodic domains are presented. The bubbles are nearly spherical and
have a rise Reynolds number of about 20. The void fraction ranges from 2% to
24%. Part 1 analysed the rise velocity and the microstructure of the bubbles. This
paper examines the fluctuation velocities and the dispersion of the bubbles and the
‘pseudo-turbulence’ of the liquid phase induced by the motion of the bubbles. It is
found that the turbulent kinetic energy increases with void fraction and scales with
the void fraction multiplied by the square of the average rise velocity of the bubbles.
The vertical Reynolds stress is greater than the horizontal Reynolds stress, but the
anisotropy decreases when the void fraction increases. The kinetic energy spectrum
follows a power law with a slope of approximately −3.6 at high wavenumbers.

1. Introduction
We report the results of direct numerical simulations of systems of buoyant bubbles

containing up to 216 bubbles in triply periodic domains. The governing parameters
were selected to give nearly spherical bubbles that rise with a Reynolds number of
12–30, depending on the void fraction, which ranges between 2% and 24%. In Bunner
& Tryggvason (2002a), henceforth referred to as Part 1, the motion of the bubbles
and the microstructure were analysed. It was found that the rise velocity decreases as
the void fraction increases and that bubble pairs tend to align themselves horizontally.

Here, in Part 2, the fluctuation velocities and the dispersion of the bubbles are
examined in § 3.1 and § 3.2, respectively. The unsteady motion of bubbles through an
otherwise quiescent liquid results in an unsteady velocity field due to the displacement
of the liquid by the bubble motion. This unsteady flow is often referred to as ‘pseudo-
turbulence’ to distinguish it from ‘real’ turbulence, such as grid turbulence, caused by
unsteady vortical flow at high Reynolds number. In engineering modelling of dispersed
multiphase flows, averaging of the equations of motion results in the appearance of
Reynolds stress terms even for low-Reynolds-number flows. While high-Reynolds-
number, turbulent bubbly flows in pipes have been studied extensively, only a few
papers deal with homogeneous turbulent flows (Serizawa, Kataoka & Michiyoshi
1975; Lance & Bataille 1991; van Wijngaarden 1998). In particular, Lance & Bataille
(1991) have shown that the contributions of the turbulence in the liquid and the
pseudo-turbulence due to the bubbles are only additive at void fractions below a
value of about 1%. For higher void fractions, the turbulence is strongly amplified
due to the hydrodynamic interactions between the bubbles. The complexity of bubbly
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flows therefore warrants the study of laminar bubbly flows, for which no work is
available in the literature, to the knowledge of the authors. This is discussed in § 3.3.
One particularly important issue, addressed in § 3.4, is the existence of a universal
kinetic energy spectrum, on which current turbulence models of bubbly flows, which
are usually extensions of the k − ε model, rely.

2. Problem formulation
We consider the three-dimensional motion of a triply periodic monodisperse array

of buoyant bubbles with equivalent diameter d, radius a, density ρb, viscosity µb and
uniform surface tension σ in a fluid with density ρf and viscosity µf . The array of
bubbles is repeated periodically in the three spatial directions with periods equal to
L. In addition to the acceleration due to gravity, g, a uniform acceleration is imposed
on the fluid inside and outside the bubbles to compensate for the hydrostatic head,
so that the net momentum flux through the boundaries of the computational domain
is zero.

The non-dimensional parameters describing the flow are the Eötvös number (some-
times also called Bond number), Eo = ρfgd

2/σ, the Galileo or Archimedes number,
N = ρ2gd3/µ2 = Eo3/2/Mo1/2, the void fraction α, and the ratios of the densities
and viscosities of the fluid in the bubble and in the continuous phase, ρb/ρf and
µb/µf . For given fluids, the Eötvös number is a characteristic of the bubble size. The

Galileo number is a Reynolds number squared based on the velocity scale (gd)1/2. The
Morton number, M = gµf

4/ρfσ
3, is sometimes used instead of the Galileo number.

In this paper, we selected Eo = 1 and N = 900, which results in a rise Reynolds
number of about 36.0 in an unbounded flow. For computational reasons, the density
and viscosity ratios are taken to be 1/50. It is shown in § 2.7 of Part 1 that these finite
ratios have insignificant effects on the results and that the results are representative
of typical gas–liquid flows where the density and viscosity ratios may be lower.

Both regular arrays, where the periodic cell contains only one bubble, and free
arrays, where two or more bubbles are included in the periodic cell, are considered.
For free arrays, the number of bubbles in the cell, Nb, is an additional parameter of
the problem. Results are presented for values of Nb ranging from 4 to 216. It was
found in Part 1 that a good estimate of the average rise velocity can be achieved with
as few as 12 bubbles.

In typical bubbly flows, surfactants affect the behaviour of the bubbles. We assume
that surfactants are absent so that the interface is shear stress free. Since we are
interested in steady-state average quantities, we also assume that the number of
bubbles is constant by preventing the bubbles from coalescing (Part 1, § 2.2). Both
coalescence and the presence of surfactants can be included in the numerical method,
but they represent added complexities and it is important to first develop a thorough
understanding of flows where they are not present.

The numerical method is a front tracking/finite difference method originally de-
veloped by Unverdi & Tryggvason (1992) and described in more detail in § 2.2 of
Part 1 and Tryggvason et al. (2001). A single incompressible Navier–Stokes equation
is solved over the entire flow domain. The interface between the fluids inside the
bubble and the outer fluid is tracked explicitly by a moving mesh, or front, and the
density and viscosity fields are reconstructed at each time step from the position of
the front. The surface tension is added as a smoothed delta function onto the grid
and it can be verified that the usual statements of continuity are satisfied at the
interface. A number of validation tests are reported in the references. The definitions
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of the bubble velocity V b, slip or relative velocity V r , drift velocity V d, fluctuation
velocity V ′b and the liquid Reynolds stress 〈u′iu′j〉 are given in § 2.3 of Part 1. The
vertical relative velocity Wr will be used to scale the fluctuation velocities. From
the condition that the mass-averaged velocity of the mixture is zero (Part 1, § 2.2),
V m = (αρbV b + (1 − α)ρfV f)/(αρb + (1 − α)ρf) = 0, and the ratio of the densities,
ρb/ρf = 1/50, it is easy to verify that Wr and Wb differ by less than 0.6% in all
cases considered here. Note that the drift velocity Wd is used to report the mean rise
velocity of the bubbles and that it is related to the relative velocity by Wd = (1−α)Wr .
Grid-independence studies (Part 1, § 2.4) showed that the resolutions employed for
the simulations lead to errors in the Reynolds stresses of about 5% for α = 24%
and 2% for α 6 12%. Because of its prohibitive cost, no grid-independence study
was performed in three dimensions with many bubbles to determine resolution re-
quirements for the fluctuation velocities of the bubbles, but a less computationally
expensive two-dimensional grid-independence study was performed and indicated that
the errors in the fluctuation velocities are smaller than the errors in the Reynolds
stresses (although we note that statistical variability due to finite averaging times and
small system sizes may lead to significant errors, as discussed later).

The initial configuration of the Nb bubbles in the free arrays is a perturbed regular
array, as explained in Part 1, § 3. The simulations are conducted over sufficiently
long periods of time that well-defined statistical results are obtained and that the
steady-state results do not depend on the initial conditions.

3. Results
A table containing a list of the simulations of the free arrays, along with the

computational requirements and timings of the simulations, is given in Part 1, § 3.

3.1. Bubble velocity fluctuations

Many bubbles rising together due to buoyancy do not move with a constant velocity
but instead experience diffusion-like fluctuations in velocity due to interactions with
neighbouring bubbles. In the potential flow simulations of Sangani & Didwania
(1993), Smereka (1993), and Yurkovetsky & Brady (1996), the bubble velocities
become equal when viscous dissipation is included. This is not observed in experiments
or in our direct numerical simulations. The average velocity fluctuations in the vertical

direction, W ′
b, and in the horizontal direction, (U ′b

2 + V ′b
2)

1/2
, are plotted versus time in

figure 1 for the different values of Nb at α = 6% and in figure 2 for the different values
of α and Nb = 27. The variations of the fluctuation velocities are much larger than
those of the rise velocities, with both long- and short-wave components. A Fourier
transform of the fluctuation velocities of the individual bubbles reveals a continuously
varying spectrum. In particular, no peak corresponding to a mean encounter time
between bubbles can be determined. However, high-frequency components of the
spectrum increase with the void fraction, which is consistent with the increased
frequency of interaction between the bubbles. In the initial rise transient, W ′

b remains
very small until the perturbed array breaks up and then typically increases sharply
while the bubbles rearrange themselves before settling down to a statistical steady
state. The fluctuation velocities exhibit a strong dependence on both system size and
void fraction.

For solid particles sedimenting in Stokes flow, Caflish & Luke (1985) initiated a still
unresolved controversy by showing that the variances of the fluid and particle veloci-

ties increase like N
1/3
p as the number of particle Np increases. Among the assumptions
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Figure 1. Average fluctuation velocities in the (a) vertical and (b) horizontal directions vs. time for
different values of Nb at α = 6%. Notation: Rew′ = ρfW

′
bd/µf and Reu′+v′ = ρf(U

′2
b + V ′2b )1/2d/µf ,

where (U ′b, V ′b,W ′
b) are the fluctuating components of the bubble velocities, defined in Part 1, § 2.3.

leading to this result are the neglect of inertia, absence of walls, consideration of
two-particle interactions only, and a random particle distribution. Various screening
mechanisms were devised in order to render the variance finite. Koch & Shaqfeh
(1991) suggested that screening results from correlations in the particle distribution.
They found that a distribution characterized by a net deficit of one particle in the
neighbourhood of a test particle can lead to finite velocity fluctuations. Numerical
simulations with up to 108 particles using a multipole method (Ladd 1993) and with
up to 32 768 particles using a lattice-Boltzmann approach (Ladd 1997) did not show
the deficit predicted by the Koch–Shaqfeh (1991) theory, nor did they show conver-
gence of the velocity fluctuations when the system size increases. Convergence was
observed in the experiments of Ham & Homsy (1988), Nicolai & Guazzelli (1995),
Nicolai et al. (1995), and Segré, Herbolzheimer & Chaikin (1997). Brenner (1999)
explored the effect of walls on the velocity fluctuations and concluded that this effect
does not exclude the possibility of divergence when the system size increases. He also
proposed another screening mechanism based on a cutoff of the slow decay in r−1 of
the velocity induced by a particle. His argument is that, when the velocity fluctuations
reach a certain level, particle diffusion becomes larger than the momentum diffusion
due to viscosity. At this point, momentum transport through diffusion away from the
particles is no longer effective, and u ∼ r−1 is not valid anymore.

For bubbles and particles at Re ∼ O(1), where the Oseen approximation can be
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Figure 2. Average fluctuation velocities in the (a) vertical and (b) horizontal directions vs. time
for different values of α at Nb = 27. The notation is the same as in figure 1.

used, Koch (1993) showed that the velocity fluctuations are screened by buoyancy
screening, as described below. In the Oseen solution, the velocity decays like r−2

outside the wake but r−1 in the wake, which causes a logarithmic divergence in the
velocity fluctuations. Koch (1993) argued that the lift force tends to retard advection
of particles into the wake of a test particle, which leads to a deficit of particles in the
centre of the wake of the test particle and to screening of the velocity fluctuations at a
finite distance behind the particle. Such a deficit was indeed observed in experiments
by Cartellier & Rivière for Re ∼ O(10) (but not for Re ∼ O(1)), together with a slight
accumulation of bubbles on the border of the wake.

When the potential flow model is used to determine the motion of bubbles in
the limit of high Reynolds number and low Weber number, the velocity disturbance
created by a bubble decays like r−3, so that the variance is expected to converge
as Nb increases. The question of how large the system must be in order to provide
results that are independent of Nb has, to our knowledge, not been addressed in
the literature. However, simulations of the motion of spherical bubbles in potential
flow in the absence of gravity and viscosity (Smereka 1993) showed a small but
noticeable increase in the mean value of the variance between Nb = 50 and 200,
as well as large fluctuations in time (when gravity and viscosity are included, the
variance decays towards zero, as noted previously). These findings are consistent
with our results. Both the horizontal and the vertical velocity fluctuations in figure 3
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Figure 3. Effect of system size on the mean velocity fluctuations at α = 6% and 12%. The notation
is as in figure 1. The average values are determined over the time intervals [Ti, Tf] defined in table 4
of Part 1. The error bars represent the standard deviation of the data over this time interval.

increase when the system becomes larger. Although it is not possible to determine
the large-Nb limits, we note that the rates of increase become smaller as Nb increases.
Furthermore, the results of Part 1, § 3.3 indicate a deficit of bubbles in the wake of
each bubble. Therefore, according to Koch’s (1993) theory, the fluctuations velocities
should converge.

The mean velocity fluctuations are also strong functions of the void fraction, as
shown in figure 4. W ′

b increases until α = 12% and remains approximately constant

for α > 12% (figure 4(a)). In contrast, (U ′2b + V ′2b )
1/2

increases in the entire [2%, 24%]
interval; at 24%, it is equal to 72% of W ′

b. This shows that energy is being transferred
by the fluctuating motion of the bubbles from the vertical to the horizontal directions,
a phenomenon which is also seen in the turbulence characteristics of the liquid phase.
A similar trend in the variation of the anisotropy with void fraction is observed in
experiments of settling solid particles in Stokes flow conditions (Nicolai et al. 1995).
However, the velocity fluctuations relative to the mean velocity are much higher for
sedimenting particles, where they reach up to 170% (Nicolai et al. 1995), than they are
for the bubbles in our simulations, where W ′

b/Wr is at most 27%. Increased isotropy
of the bubble velocity fluctuations is also seen in studies of turbulent dispersion of
bubbles when the turbulence intensity of the flow field increases (Spelt & Biesheuvel
1997, 1998). The only turbulence present in our simulations is the pseudo-turbulence
generated by the motion of the bubbles.

Sangani, Zhang & Prosperetti (1991) considered the problem of a bubbly mixture
subjected to a small-amplitude oscillatory motion. They determined the variance
normalized by the mean amplitude of the bubble velocities in a dilute random array
to leading order in α,

var = 0.275α, (3.1)

and obtained values at higher void fractions by dynamic simulations using a multipole
method. They found that the variance reaches a maximum of approximately 0.025
at α ≈ 30%. This is consistent with our results, where the variance increases in the
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Figure 4. Effect of void fraction on the (a) vertical velocity fluctuations, (b) horizontal velocity
fluctuations, and (c) total velocity fluctuations for Nb = 27 (α = 2%, 6%, 12% and 24%) and
Nb = 13 (α = 3%.) (d ) Ratio of the vertical to the horizontal velocity fluctuations. The total velocity
fluctuations are defined as Reu′+v′+w′ = ρf(U
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b )1/2d/µf .

entire [0, 24%] interval. The variance is, however, significantly higher in our results,
where it is equal to 0.11 at α = 24%.

In figure 5(a), the variance scaled by the square of the slip velocity is shown versus
α. We see that the variance is approximately a linear function of αW 2

r , as was also
observed in the experiments of Zenit, Koch & Sangani (2001). A linear fit,

Re2
u′+v′+w′ = 0.54αRe2

r − 0.0069, (3.2)

where Reu′+v′+w′ = ρf(U
′2
b + V ′2b +W ′2

b )
1/2
d/µf , is shown in figure 5(b). It appears that

the variance depends in a nonlinear fashion on the void fraction between α = 0 and
2%, even when the spread in the data due to statistical variations is accounted for. In
contrast, the velocity fluctuations in the liquid phase, i.e. the turbulent kinetic energy,
is a linear function of the void fraction, as seen in § 3.3. The ratio of the vertical over
horizontal velocity fluctuations, in figure 4(d ), decreases with α, although variations
due to large statistical errors can be seen. In contrast, for solid particles (Nicolai
et al. 1995), this ratio increases up to 12% and decreases for larger concentrations,
although the values of the ratio are of the same order of magnitude.

Finally, it is interesting to relate the bubble velocity fluctuations to the micro-
structure. Spelt & Sangani (1998) determined the pair probability density for two
bubbles in contact as a function of the angle between the line joining two bubbles
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Figure 5. (a) Average bubble velocity fluctuations divided by the average relative velocity, plus
the first-order expression in α of Sangani et al. (1991). (b) Proposed scaling of the total velocity
fluctuations: Re2

u′+v′+w′ = 0.54αRe2
r − 0.0069, where Reu′+v′+w′ is defined in figure 4.

and the vertical direction (i.e. G(θ) at r = 2a, using the notation defined in Part 1,
§ 3.3) by potential flow simulations, where the mean rise velocity and the mean bubble
velocity variance are imposed. Similarly to our results, they found a peak in G(θ) at
θ = π/2, indicative of a preference for an horizontal alignment of bubble pairs. They
also found that the peak value decreases when the fluctuation velocities increase. Both
of these findings are consistent with our results. However, there are also significant
differences. The velocity fluctuations are nearly isotropic in Spelt & Sangani (1998),
whereas they are strongly anisotropic in our results. Also, the bubbles do not touch
each other when the void fraction is low in our simulations, whereas the very definition
of the pair probability adopted by Spelt & Sangani (1998) assumes that they do, for
dilute as well as for dense flows.
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3.2. Hydrodynamic dispersion of the bubbles

The dispersion of the bubbles is characterized by the mean value of the bubble
velocity fluctuations and the relaxation time of their autocorrelation function. The
theory of the dispersion of fluid points in a homogeneous stationary turbulent flow
was laid out by Taylor (1921). Taylor showed that the mean-square displacement of
a marked fluid particle is given by

X(T )2 = 2u2

∫ T

T0

dt

∫ t

0

R(τ)udτ, (3.3)

where R(τ)u = u(t)u(t+ τ)/u2 is the Lagrangian autocorrelation function of the fluctu-

ating velocity u(t) following a fluid point. He also showed that X(T )2 = 2u2TL(T−T0)
for (T − T0) � TL, where TL =

∫ ∞
0
R(τ)udτ is the Lagrangian integral time scale.

Batchelor & Townsend (1956) recognized that, as for random-walk problems, a linear

variation of the dispersion X(T )2 with time is associated with a Gaussian probability
distribution Q(X) of the displacements X. This is equivalent to the statement that Q
satisfies a diffusion equation

∂Q

∂t
= D

∂2Q

∂X2
, (3.4)

where the diffusion coefficient or dispersion coefficient D is given by

D = u2TL = lim
T→∞

1

2

dX2(T )

dT
. (3.5)

D can also be determined using the pseudo-coefficient

D = lim
T→∞

X2(T )

2(T − T0)
. (3.6)

These equations are applicable for the dispersion of particles or bubbles if u is
the fluctuating component of the velocity of the particles or bubbles instead of
the fluctuating velocity of a fluid point and if the displacements have a Gaussian
probability distribution. The Lagrangian integral scale TL is a measure of the time of

statistical persistence of the velocity of the particle and the length u2
1/2
TL is a measure

of the distance travelled by the particle during this time. The dispersion of particles
and bubbles is generally anisotropic and therefore described by a dispersion tensor.
This dispersion tensor is used in two-fluid models of multiphase flows to express the
continuity equation of the dispersed phase as

∂(ερ)

∂t
+ ∇ · (ερu) = ∇ · D∇(ερ) (3.7)

(Crowe, Troutt & Chung 1996; Sokolichin et al. 1999), where ε, ρ and u are respectively
the local void fraction, the density and the velocity of the dispersed phase. However,
for this simple dispersion model to be valid, it is necessary to prove that the statistics
of the bubble motion are Gaussian.

Due to the difficulty of measuring Lagrangian statistical properties in experiments,
the only available data in the literature for the dispersion of bubbles are the studies
of turbulent transport of Serizawa et al. (1975), Spelt & Biesheuvel (1997, 1998) and
Poorte (1998). Although direct comparisons with results for solid particles are not
possible, it is nevertheless instructive to look at our results in view of the literature
for particles, which is richer than the one for bubbles. Since we are interested
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Figure 6. Probability density functions of the bubble velocity fluctuations for (a) α = 2%, Nb = 27,
(b) α = 6%, Nb = 27 and 216, (c) α = 12%, Nb = 27, and (d ) α = 24%, Nb = 27. In (b), only the
p.d.f. of W ′

b is shown; the p.d.f.s of U ′b and W ′
b are similar to those at α = 12% and 24%. The

velocity fluctuations are scaled by their standard deviations, σU , σV , and σW , and [−3σ,+3σ] is
discretized into 19 intervals.

in self-diffusion in a homogeneous flow, we only mention the related studies of
diffusion induced by a gradient of concentration (Davis & Hassen 1988; Nitsche &
Batchelor 1997), by shear (Eckstein, Bailey & Shapiro 1977; Leighton & Acrivos
1987; and Acrivos et al. 1992), and by turbulence (Snyder & Lumley 1971; Squires
& Eaton 1990; Elghobashi & Truesdell 1992; Wang & Maxey 1993). A review of the
hydrodynamic dispersion of suspended particles is given by Davis (1996). Relevant
studies of the self-dispersion of particles include Ham & Homsy (1988), Ladd (1993,
1997), Nicolai et al. (1995), and Parthasarathy & Faeth (1990a,b).

The probability density functions (p.d.f.) of U ′b, V ′b and W ′
b are shown in figure 6

for the different values of α and Nb. Since the displacements of the bubbles are time
integrals of their velocities, the p.d.f. of the displacements is Gaussian if the p.d.f. of
the velocities is Gaussian. The velocities are normalized by their respective standard
deviations, σU , σV and σW , and the N(0, 1) Gaussian p.d.f. is superposed on the
plots for reference. We checked that the results are insensitive to the number of time
samples and the number of intervals on the horizontal axis. However, it is likely that
the results are somewhat affected by the limited system size and simulation time.

Even though small differences can be seen in figure 6 for the different values of
Nb and α, in particular in the interval −σW < W ′

b < σW , the qualitative trends are
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the same. The curves of the p.d.f. of W ′
b are slightly asymmetric and lie above the

N(0, 1) curve for −2σW < W ′
b < −0.5σW , but below it for −0.5σW < W ′

b < 0.5σW .
This can be explained by the preponderance of horizontally aligned bubble pairs,
whose rise velocity is less than the average rise velocity, as seen in figure 16 of Part 1.
For W ′

b < −2σW , the p.d.f. of W ′
b lies below the Gaussian p.d.f., indicating a scarcity

of bubbles with a very low rise velocity. This is also consistent with the observations
made in § 3.3 of Part 1 concerning figure 16. In contrast, the p.d.f.s of U ′b and V ′b are
roughly symmetric, although their shape is slightly narrower than the shape of the
Gaussian p.d.f. and their peak lies above that of N(0, 1). Spelt & Biesheuvel (1997,
1998) determined the p.d.f. of the bubble velocities by kinematic simulation for very
dilute bubbly flows in an imposed turbulent flow field and Poorte (1998) performed
the corresponding experiments. The results of Spelt & Biesheuvel (1997, 1998) and
Poorte (1998) agree well with each other, but show significant differences from our
results. They report that the p.d.f. of W ′

b is also asymmetric, but with a maximum
at W ′

b > 0 instead of W ′
b < 0, and that the values of the p.d.f. for W ′

b � 0 are
greater than those of the Gaussian p.d.f. Poorte (1998) attributes the large probability
at W ′

b � 0 to the preferential attraction of bubbles to downflow regions due to the
lift force. The difference between the results of Spelt & Biesheuvel (1997, 1998) and
Poorte (1998) and our results can be attributed to the very different flow conditions.
The void fractions in our simulations are much larger than in their experiments
and simulations and the Reynolds number is much lower. In addition, the external
forcing by a turbulent flow, which is responsible for the creation of large-scale flow
structures such as downflow regions in their studies, is absent from our simulations,
where dispersion is primarily due to the hydrodynamic interactions of the bubbles.

As the void fraction increases, the p.d.f. of W ′
b generally becomes closer to the

Gaussian curve, except in the interval −σW < W ′
b < σW , where significant differences

remain. The effect of system size, illustrated in figure 6(b) for Nb = 27 and 216, is
small, except again in the −σW < W ′

b < σW interval. Assuming the dispersion process
of the bubbles to be a Gaussian diffusion process is apparently a good first-order
approximation. Ham & Homsy (1998), Parthasarathy & Faeth (1990b), Ladd (1993)
and Nicolai et al. (1995) all mention that the p.d.f. of the particle velocity fluctuations
are approximately Gaussian, although Ladd (1993) adds that there are significant
non-Gaussian effects at high volume fractions, and Parthasarathy & Faeth (1990b)
report flatness factors between 3.5 and 6.3. In comparison, the flatness factor for the
results of figure 6 is between 2.3 and 3.5.

Another method to evaluate whether the dispersion process can be approximated

as a diffusion process is to see if the pseudo-coefficient D′i(T ) = X2
i (T )/2(T − T0)

converges towards a constant value as T increases. D′x(T ) + D′y(T ) and D′z(T ) are
shown in figure 7. They are determined by averaging over the [Ti, Tf] interval in order
to avoid the initial transient:

D′i(T ) =
1

Tf − Ti − T
∫ Tf−T

Ti

X2
i (T | T0)

2(T − T0)
dT0. (3.8)

The mean values, D′x + D′y and D′z , are determined over the [Ti + 0.5(Tf − Ti),
Ti + 0.9(Tf − Ti)] interval and are shown in figure 7 by horizontal lines.

Although the limited simulation time and system size lead to a large uncertainty
in their estimation, the dispersion cofficients seem to converge in time. Therefore the
dispersion process can be characterized by a diffusion model. The same result was
found by Serizawa et al. (1975) in experiments on turbulent transport of air bubbles
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Figure 7. Dispersion coefficients versus time. (a) Vertical coefficient D′z and (b) horizontal coefficient
D′x +D′y for different system sizes at α = 6%. (c) Vertical coefficient D′z and (d ) horizontal coefficient
D′x + D′y for different void fractions and Nb = 27; the mean values are superposed along with the
interval on which they are determined.

in water. The horizontal pseudo-coefficients converge faster in time than the vertical
pseudo-coefficients, which is consistent with the results for the probability densities.
Like the velocity fluctuations, system size effects are more pronounced for D′x + D′y
than for D′z . D′x + D′y increases by a factor of 2.5 between Nb = 27 and Nb = 216.
The individual values of D′x and D′y , not shown, which should be equal in view of
the symmetry of the problem, differ by up to 20% for Nb = 27, but the difference is
smaller when the system is larger. We also checked that the off-diagonal components
of the dispersion tensor, D′xy(T ), D′xz(T ) and D′yz(T ), which should be zero if Nb or the
simulation time were infinitely large, are much smaller than the diagonal components.

The dependence of the dispersion coefficients on the void fraction is illustrated in
figure 8(a,b), using only the results for Nb = 27, for consistency. D′z increases until
α = 12%, where it reaches a maximum of Dz ≈ 0.3aWr . Although the self-diffusivities
of solid particles reported in the experimental studies of Ham & Homsy (1988)
and Nicolai et al. (1995) and in the numerical simulations of Ladd (1993, 1997) are
slightly different from each other, they are all larger than the values found for the
bubbles in our simulations by a factor of at least twenty. Ham & Homsy (1988) find
that the vertical diffusion coefficient reaches a maximum of Dz ≈ 6aWs at α = 5%,
where Ws is the mean settling velocity. Nicolai et al. (1995) find that Dz ≈ 10aWs

and Dx + Dy ≈ 2aWs in the 10% < α < 30% interval. The simulation results of Ladd
(1993) are of the same order of magnitude but exhibit a strong dependence on
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Figure 8. (a) Horizontal and vertical diffusion coefficients D′z and D′x + D′y as a function of α.
(b) Same as (a), but normalized by the bubble radius and the mean bubble slip velocity. (c) Ratio
of vertical to horizontal diffusion coefficients. (d ) Vertical and horizontal Lagrangian integral time
scales as a function of Nb for α = 6%. (e) Vertical and horizontal Lagrangian integral time scales Tz
and Tx+y normalized by (g/d)1/2 as a function of α. ( f ) Same as (e), but the times are normalized
by Wr/a. All the results, except those in (d ), are for Nb = 27.

the number of particles Np, since the normalized vertical dispersion coefficients are
respectively 3.6 and 8 for Np = 32 and 108.
D′z is much larger than D′x+D′y . The ratio of D′z over D′x+D′y , in figure 8(c), is greater

than 10 for α 6 12%. For α = 24%, this ratio is smaller, about 3.8, but still much
larger than the ratio of the squares of the vertical and horizontal velocity fluctuations,
which is about 1.9 at 24%. The anisotropy is greater than in the experiments of Nicolai
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et al. (1995). The same observation is made in the numerical simulations of Ladd
(1993), where the vertical coefficients are larger than the horizontal coefficients by
two orders of magnitude. In both our study and in Ladd’s (1993) study, it is possible
that this very large anisotropy is due in part to system size effects, since it appears
that the horizontal dispersion coefficients are more sensitive to Nb than the vertical
dispersion coefficient.

Using the relations D′z = W ′
b

2Tz and D′x + D′y = (U ′b
2 + V ′b

2)Tx+y , the vertical and
horizontal Lagrangian integral time scales Tz and Tx+y are determined and plotted
in figure 8(d,e, f ). The effect of system size is noticeable, but smaller than for the
dispersion coefficients. The dependence of Tz and Tx+y on the void fraction is marked
by an almost monotonic decrease in the [2%, 24%] interval, the values at 24% being
smaller than the values at 2% by a factor of about 6. The integral time scales are
anisotropic like the dispersion coefficients, but the ratio of the vertical and horizontal
components is smaller and is approximately equal to 2.

The autocorrelation functions of the velocity fluctuations are determined according
to

R(T )WW =
1

Tf − Ti − T
∫ Tf−T

Ti

W ′
b(T0)W

′
b(T0 + T )

W ′
b

2
dT0, (3.9)

for T going from 0 to Tf − Ti. The autocorrelation functions of the horizontal and
vertical velocities are shown in figure 9. The small number of sampling times as T
approaches Tf−Ti and the limited size of the systems are the causes of the fluctuations
seen in the plots, in particular when T becomes large. Therefore, while it should be
possible to recover the values of the Lagrangian integral time scales determined
above by integrating the autocorrelation functions, the large fluctuations of these
autocorrelation functions when T is large prevents us from doing so. However, the
Taylor microscales, λt, can be estimated with a reasonable degree of accuracy because
they depend only on the behaviour of the autocorrelation functions close to T = 0,
where a large number of time samples are available to determine the autocorrelation
functions R(T ):

λt = −2
/d2R(T )

dT 2

∣∣∣∣
T0

. (3.10)

λt is determined from a finite difference approximation of the derivative of R(T ). The
Taylor microscales are shown in figure 10. Like the integral time scales, the Taylor
microscales depend slightly on Nb and decrease with α. The Taylor microscales are
only slightly smaller than the integral time scales.

Comparisons of the autocorrelation functions for α = 6% and Nb = 27, 91 and 216
reveal significant differences in the horizontal components at all values of T . Large
differences are also observed for R(T )WW , but they are mostly at large times, where
statistical errors are large. Two general observations can be made about the results.

The first observation is that R(τ)WW becomes negative and seems to remain nega-
tive as it approaches zero. The same behaviour was seen in the molecular dynamics
simulations of dense monoatomic liquids by Rahman (1964) and in the measurements
of particle velocity autocorrelation functions in a turbulent flow by Snyder & Lum-
ley (1971). Snyder & Lumley attribute this negative correlation to the ‘correlation
effect’, i.e. the existence of a backflow necessary to satisfy continuity in the contin-
uous phase. We note that Lagrangian dispersion models of solid particles usually
follow the Langevin model of an exponentially decaying autocorrelation function
(e.g. Sommerfeld, Kohnen & Rüger et al. 1993). This exponential autocorrelation
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Figure 9. Autocorrelation functions RUU , RVV and RWW of the bubble velocity fluctuations versus
T . (a) α = 2%, Nb = 27; (b) α = 6%, Nb = 27; (c) α = 6%, Nb = 91; (d ) α = 6%, Nb = 216;
(e) α = 12%, Nb = 27; ( f ) α = 24%, Nb = 27.

function, exp(−t/Tz), is superposed in figure 9 for comparison, using the values of Tz
determined above from the diffusion coefficients.

The second observation is that the vertical fluctuation velocities remain correlated
for long periods of time. In the most dilute case, α = 2%, R(τ)WW does not appear
to have converged to zero by T = 120. When the motion of a particular bubble is
tracked in the computer animation for α = 2%, we see that its path beyond the initial
transient is nearly rectilinear and that strong interactions with neighbouring bubbles
occur only two or three times in the [Ti, Tf] interval. This is consistent with the
persistence in time of R(τ)WW . In general, the horizontal fluctuation velocities become
uncorrelated earlier than the vertical fluctuations velocities and the correlation times
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α (%) Nb Red Rer
W ′

b

Wb

(U ′b + V ′b)
Wb

D′z
aWb

(D′x + D′y)
aWb

TzWb

a

Tx+yWb

a

2 27 26.60 27.14 0.0573 0.0240 0.0973 0.0080 29.6 13.8
3 13 25.10 25.88 0.0847 0.0420 – – – –
6 2 25.85 27.50 – – – – – –
6 4 20.19 21.48 – – – – – –
6 12 21.86 22.98 0.1067 0.0479 – – – –
6 27 21.95 23.35 0.1493 0.0683 0.1775 0.0152 7.95 3.25
6 91 22.19 23.61 0.1494 0.0717 0.1779 0.0280 7.98 5.44
6 216 22.39 23.82 0.1536 0.0797 0.2141 0.0403 9.07 6.35

12 27 17.68 20.09 0.2027 0.1273 0.3195 0.2990 9.61 1.84
12 54 17.93 20.38 0.2016 0.1394 – – – –
24 27 11.87 15.62 0.2666 0.1921 0.1852 0.0488 2.60 1.30

Table 1. Transport properties of the bubbles. The values that are missing could not be determined
either because the system was too small or the simulation time was too short. Red is the drift
Reynolds number, Reb the relative Reynolds number. U ′b, V ′b and W ′

b are the fluctuation velocities.
D′x + D′y and D′z are the horizontal and vertical diffusion coefficients, respectively. a is the bubble
radius. Tx+y and Tz are the Lagrangian integral time scales of the bubble motion.
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Figure 10. Taylor microscales λt of the autocorrelation functions of the bubble velocity
fluctuations. Effect of (a) system size and (b) void fraction.

decrease as α increases. The same quatitative trends for the correlation times are seen
in the results of Ladd (1993), although Nicolai et al. (1995) report that the horizontal
and vertical correlation times are both approximately equal to 60ts independently
of the volume fraction in a range [5%, 40%], ts being the Stokes time or time
necessary for one isolated particle to fall one radius. These discrepancies highlight
the need for further studies, in particular to determine more accurately the dispersion
characteristics in the horizontal direction, since it appears that these are quite sensitive
to system size effects.

The main statistical results for the transport properties of the bubbles are sum-
marized in table 1.

3.3. Reynolds stresses and dissipation in the liquid phase

Although the flow field around a bubble remains laminar in the range of Reynolds
numbers considered, averaging approaches used to model two-phase flows lead to
the appearance of pseudo-turbulent terms characterizing the randomly fluctuating
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Figure 11. The (a) vertical and (b) horizontal Reynolds stresses vs. time for the different system
sizes at α = 6%. The data for Nb = 27 before t = 30 and for Nb = 91 before t = 12 are missing.

velocity field produced by the bubbles. As in single-phase turbulence, two fundamental
quantities are the Reynolds stress tensor and the rate of dissipation of turbulent kinetic
energy in the continuous phase. The Reynolds stress per unit volume is defined as

〈u′iu′j〉 =
1

Ωf

∫
Ωf

u′iu
′
jdV , (3.11)

where Ωf is the volume occupied by the liquid in the periodic cell and u′i is the
fluctuating component of the liquid velocity in the i direction.

The flow field is initially quiescent. When the bubbles start rising, they retain their
initial configuration for a short time and their rise velocity increases rapidly, after
which the initial array breaks up, the bubbles redistribute themselves spatially, and
the rise velocity decreases and settles down to a statistical steady state. A similar
trend is seen in the evolution of the vertical Reynolds stress with time in figures 11(a)
and 12(a). The vertical and horizontal Reynolds stresses in the liquid, 〈w′w′〉 and
〈u′u′+ v′v′〉, are shown versus time in figure 11 for different values of Nb and α = 6%
and in figure 12 for different values of α and Nb = 27. In contrast, the horizontal
Reynolds stress, in figures 11(b) and 12(b), is lower in the initial transient than in the
steady state because the motion of the bubbles is initially primarily vertical. Because
of the symmetry of the problem and the absence of walls, it is expected that the off-
diagonal components of the Reynolds stress tensor are zero and that 〈u′u′〉 ≈ 〈v′v′〉.
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Figure 12. The (a) vertical and (b) horizontal Reynolds stresses vs. time for the different void
fractions and Nb = 27. The data for α = 6% before t = 29 are missing.

We verified that both conditions are satisfied to a good degree, especially for systems
with large numbers of bubbles, the errors coming from the finite time interval used to
average the values. Numerically, the off-diagonal components are always smaller than
5% of 〈w′w′〉 and typically smaller than 1% of 〈w′w′〉. The results exhibit fluctuations
in time that decrease when Nb increases and increase when α increases, but a statistical
steady state is reached in all cases.

The mean values over the [Ti, Tf] intervals are shown in figures 13 and 14, along
with the turbulent kinetic energy, k = 〈u′u′ + v′v′ + w′w′〉/2. Both components are

dependent on the system size: 〈u′u′ + v′v′〉1/2 increases by 1.9% between Nb = 27 and

Nb = 216, while 〈w′w′〉1/2 increases by an even larger amount, 6.0%. The increase in

〈w′w′〉1/2 is larger than the increase in the average rise velocity, which is 2%, but is of
the same order of magnitude as the change in the bubble velocity fluctuations, whose
vertical and horizontal components increase respectively by 4.8% and 21% (§ 3.1).

For the free arrays, both the vertical and horizontal Reynolds stresses increase
with α, but 〈u′u′ + v′v′〉 does so faster than 〈w′w′〉. As a consequence, the anisotropy
diminishes, as can be seen in figure 14(d ): 〈w′w′〉/〈u′u′ + v′v′〉 goes from 3.3 to 1.6
between α = 2% and 24%. These values are comparable to the ratio of the squares
of the vertical and horizontal bubble velocity fluctuations, W ′2

b /(U
′2
b + V ′2b ), which

decreases from 5.7 to 1.9 between α = 2% and 24% (§ 3.1). The increased isotropy
with void fraction shows that energy is being transferred from the rise direction to the
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for (a) the free arrays with Nb = 27 and (b) the regular arrays.

horizontal direction. For regular arrays, 〈w′w′〉 increases until α = 6% and decreases
for α > 12%, but is larger than the corresponding value in the free array; 〈u′u′+ v′v′〉
is much smaller in the regular arrays than in the free arrays because of the absence
of lateral motion of the bubbles in the regular arrays.

The Reynolds stresses and the turbulent kinetic energy scaled by αW 2
r , where Wr is

the mean bubble rise velocity, are shown in figure 15. In the free arrays, 〈w′w′〉/αW 2
r

decreases slightly and 〈u′u′+v′v′〉/αW 2
r increases slightly with α, while k/αW 2

r is nearly
constant. The following scalings are obtained for the [2%, 24%] void fraction range:

〈w′w′〉/αW 2
r = 0.97± 0.11, (3.12)

〈u′u′ + v′v′〉/αW 2
r = 0.43± 0.09, (3.13)

k/αW 2
r = 0.69± 0.02. (3.14)
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Zenit et al. (2001) also found that the Reynolds stresses normalized by the squared
bubble rise velocity increase linearly with α, except in the vicinity of α = 0. In
addition, they observed similar levels of anisotropy between the vertical and horizontal
components. However, their values are larger than ours by a factor of 2 to 3; for
example, for α = 12%, they obtained 〈w′w′〉/αW 2

r ∼ 2.9 and 〈u′u′ + v′v′〉/αW 2
r ∼ 0.8.

In addition to the difference in Reynolds numbers between their experiments and our
simulations, their larger values might be due to the fact that their bubbles experienced
significant deformations. For the regular arrays, 〈w′w′〉 and k do not scale well with
αW 2

r , especially at low void fractions. For α < 6%, k is much larger in the regular
array than in the free array. For α > 6%, the value of 〈w′w′〉/αW 2

r in the regular
arrays is close to the value in the free array, suggesting that regular arrays can be
used to provide rough estimates of the vertical Reynold stress in free arrays in the
case of dense suspensions.

The inviscid solution for the flow around a sphere has been used by Drew & Lahey
(1993) in order to estimate the Reynolds stress in the continuous phase. For spherical
bubbles,

〈u′iu′j〉 =

 3
20

0 0
0 3

20
0

0 0 4
20

 αW 2
r . (3.15)

The terms in equation (3.15) were identified by Lance & Bataille (1991) as the
contribution to the Reynolds stress due to the kinematics of the bubbles, as opposed
to the contribution due to the bubble wakes. They are shown in figure 15(a). The
inviscid model underpredicts the simulation results by a factor of 5 for 〈w′w′〉 and
about 1.5 for 〈u′u′ + v′v′〉. In addition, the inviscid model given by equation (3.15)
predicts that the values of the three components of the Reynolds stress tensor are of
the same order, whereas the simulation results show a strong anisotropy in favour of
the vertical direction. These two observations suggest that the fluctuations produced
by the wakes of the bubbles are responsible for a significant portion of the total
fluctuating kinetic energy. Similar levels of anisotropy between the streamwise and
the cross-stream Reynolds stresses are reported by Parthasarathy & Faeth (1990a) in
a study of homogeneous dilute particle-laden flows caused by solid particles falling
in a stagnant water bath. In contrast, in their measurement of the turbulence in
air–water bubble flows for void fractions between 0 and 3%, Lance & Bataille (1991)
found that the Reynolds stress tensor is nearly isotropic. They report that 〈w′w′〉/W 2

r

is a linear function of α and is in good agreement with the inviscid model for
the contribution due to the bubble kinematics, which leads them to suggest that
the wakes contribute only a small amount to the total fluctuating kinetic energy.
Their experimental conditions are, however, very different from the conditions of
our simulations. Lance & Bataille (1991) use large ellipsoidal bubbles which follow
helicoidal trajectories and therefore induce large lateral motion in the fluid, whereas
the parameters in our simulations are chosen such that bubbles rise approximately
rectilinearly in dilute conditions.

Lance & Bataille (1991) give a rough measure of the contribution of the wakes
to the Reynolds stress by noting that the dissipation rate due to the wake can be
estimated by the work performed by the drag force experienced by the bubbles,

εw ≈ α

d
CDW

3
r , (3.16)

and by assuming that the velocity fluctuations u′w associated with this dissipation
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have a lengthscale lw , so that

u′2w ≈
(α
d
Cdlw

)2/3

W 2
r . (3.17)

The contribution of this term is added to the contribution of the potential model;
the total is shown in figure 15(a). The lengthscale representative of the dissipation
in the wake is taken to be the width of the wake, for which a crude approximation
is made by using Moore’s estimate, lw = aRe−1/4, even though this expression has
been established for higher Reynolds numbers. When the streamwise contributions of
equations (3.15) and (3.17) are added, the result for 〈w′w′〉/αW 2

r is of the same order
of magnitude as the values found in the simulations, which confirms the importance
of the contribution of the wake to the Reynolds stress.

We define the dissipation rate per unit volume in the gas and in the liquid phase,
εij , and the dissipation rate per unit volume in the liquid phase only, εfij , as

εij =
1

2Ω

∫
Ω

µ

(
∂ui

∂xj
+
∂uj

∂xi

)2

dV , (3.18)

εfij =
1

2Ωf

∫
Ωf

µ

(
∂ui

∂xj
+
∂uj

∂xi

)2

dV , (3.19)

where Ω and Ωf are the volumes of the entire domain and of the liquid phase,
respectively. The total dissipation rate, ε =

∑
εij , can be related to the average

bubble rise velocity by noting that the rate of work done by the bubbles on the fluid
is balanced by the dissipation rate at steady state. Esmaeeli & Tryggvason (1999)
found

ε =
1

Ω

∫
Ω

(ρ0 − ρ) u · gdV = αgWrρf(1− α+ αr)(1− r), (3.20)

where ρ0 is the volume-averaged density and r = ρb/ρf is the density ratio. The value
of ε scaled by the right-hand side of equation (3.20) is shown versus α in figure 16,
along with (1 − α)εf/ε, where εf =

∑
εfij . Equation (3.20) is satisfied to within 2–

3% in both the free and regular arrays. It is interesting to note that (1 − α)εf/ε is
approximately constant and that the dissipation rate in the bubbly phase represents
about 10% of the total dissipation rate ε, irrespective of the void fraction, so that
αgWrρf(1− α+ αr)(1− r) also provides a good scaling for the dissipation rate in the
liquid only.

The different components of the dissipation rate tensor in the liquid phase, εfij ,
are shown versus time for Nb = 216 in figure 17 and versus α for Nb = 27 in
figure 18. All values are scaled by εf . For the free arrays, the vertical component,
εfzz , is twice as large as the horizontal components, εfxx and εfyy . In absolute
value, all components of εfij increase monotonically with α. Finally, we note that,
like the rise velocity, the results are approximately independent of system size for
Nb > 12.

The main properties of the liquid-phase turbulence are summarized in table 2 for
the free arrays. The Kolmogorov lengthscale lK and the Taylor microscale λ, defined
in table 2, decrease slightly as the void fraction increases. Because of the low Reynolds
number, λ is only two to three times larger than lK , whereas it is about one hundred
times larger in the experiments of Lance & Bataille (1991), where the Reynolds
numbers are much larger. The Kolmogorov lengthscale is always much smaller than
the bubble diameter. In numerical simulations of particulate flows, the Kolmogorov
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Figure 16. Scaling of the total dissipation rate by the average velocity of the bubbles relatively to
the liquid and ratio of the dissipation rate in the liquid to the total dissipation rate for the (a) free
arrays with Nb = 27 and (b) regular arrays.

lengthscale is often assumed to be larger than the particles, so that the particles can
be modelled as points (e.g. Squires & Eaton 1990; Elghobashi & Truesdell 1992;
Wang & Maxey 1993). Such an assumption is impossible for typical bubbly flows.
For example, in the experiments of Lance & Bataille (1991), d is about 5 mm while
lK is about 0.01 mm. Numerical simulations of bubbly flows must therefore account
for all scales of motion.

3.4. Kinetic energy spectrum

As pointed out by Sundaram & Collins (1999), two-equation models of turbulence
assume that the energy spectrum can be described by two quantities such as the
kinetic energy and dissipation rate of kinetic energy. In multiphase flows, it is not
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Figure 17. The components of the dissipation rate tensor in the liquid scaled by the total
dissipation rate in the liquid as a function of time for Nb = 216.
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Figure 18. The components of the dissipation rate tensor in the liquid divided by the total
dissipation rate in the liquid for the (a) free arrays with Nb = 27 and (b) regular arrays.

clear if such a universal spectrum exists. In this section, we examine the isotropic
kinetic spectrum to determine whether it settles down to a steady-state shape, how it
depends on the system size, and how it depends on the void fraction.

To examine the structure of the velocity field, we determine the isotropic kinetic
energy spectrum, E(k). The spectrum is computed from the velocity field u and density
field ρ in the entire computational domain and is normalized so that

∑
k E(k)∆k =

1
2

∫
Ω
ρ‖u‖2dV . First, the discrete Fourier transforms of the velocities multiplied by

the square root of the density are calculated. Then the energy content is summed in

spherical shells of width ∆k centred at k = (k2
x + k2

y + k2
z )

1/2
. An isotropic spectrum

is commonly used even in situations which are clearly anisotropic such as the rise of
bubbles.

The kinetic energy spectrum is shown at different times for Nb = 27, α = 6% in
figure 19. At t = 8.6, the bubbles are in their initial transient phase. Since the initial
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α (%) Nb Rer
〈w′w′〉
gd

〈u′u′ + v′v′〉
gd

εf

ρf
√
g3d

lK

d

uK

Wb

λ

d
Reλ

(10−2) (10−2) (10−2)

2 27 27.14 1.77 0.54 1.61 0.219 0.168 0.489 1.29
6 4 21.48 3.46 0.66 3.54 0.180 0.259 0.441 1.55
6 12 23.26 3.22 1.33 4.00 0.174 0.249 0.436 1.61
6 27 23.35 3.59 1.39 4.14 0.173 0.248 0.448 1.76
6 91 23.61 3.76 1.40 4.13 0.173 0.245 0.456 1.80
6 216 23.82 4.03 1.44 4.17 0.173 0.243 0.468 1.90

12 27 20.09 4.98 2.30 7.07 0.151 0.329 0.414 1.94
12 54 20.38 5.42 2.37 7.06 0.151 0.324 0.429 2.07
24 27 15.62 5.60 3.41 11.1 0.135 0.474 0.368 1.92

Table 2. Properties of the turbulence in the liquid: vertical and horizontal Reynolds stresses 〈w′w′〉
and 〈u′u′ + v′v′〉, dissipation rate per unit volume of liquid, εf , Kolgomorov length and velocity
scales lK and uK , Taylor miscroscale λ, microscale Reynolds number Reλ. The Kolmogorov scales

are determined according to lK = (ν3
fρf/εf)

1/4
and uK = (εfνf/ρf)

1/4
. Note that εf/ρf represents

the dissipation rate per unit mass. λ is evaluated roughly by using the single-phase formula for
homogeneous isotropic turbulence, εf = 15νfu

′2/λ2, where u′ is the r.m.s velocity determined from

the turbulent kinetic energy in the liquid, u′ = (2kf/3)1/2, and kf = 〈u′u′ + v′v′ + w′w′〉/2 (Tennekes
& Lumley 1972). Reλ is defined as Reλ = ρfu

′λ/µf . The mean rise Reynolds number of the bubbles,
Rer , based on the slip velocity of the bubbles relative to the liquid, is added for reference.

flow field is quiescent and no external forcing is applied, the long waves contain little
energy immediately after the bubbles are released. The peak at kd = 3.04 corresponds
to the average horizontal or vertical distance between neighbouring bubbles in the
initial perturbed array, which is the mode being excited. As pointed out by Esmaeeli
& Tryggvason (1996), the bubbles can be viewed as a stirring force acting on the fluid.
As time increases, energy is fed by the bubbles into the long-wave components of
the spectrum. However, unlike the two-dimensional results of Esmaeeli & Tryggvason
(1996), there exists a statistical steady state, where the production of energy by the
bubbles balances the dissipation of energy in the liquid. In particular, no large-scale
flow structure is observed. Since the number of bubbles is small and effects of system
size are visible in the results for the bubble velocity fluctuations up to Nb 6 216,
as seen in § 3.1, it is possible that large-scale flow structures would appear in larger
simulations, but we believe that it is unlikely for two reasons. First, no trend toward
the formation of such structures can be seen in our results. Figure 20 shows the
kinetic energy spectrum for Nb = 27, 91 and 216 at the same time. The spectra are
almost identical. The small differences at low wavenumbers can be attributed to the
fluctuations in time of the total kinetic energy. Second, the mechanisms responsible
for the interaction of two bubbles, which were described in Part 1, § 3.3, tend to
homogenize the spatial distribution of the bubbles. When two bubbles are aligned
side by side, they tend to repel each other. When they are aligned in tandem, the
trailing bubble is attracted into the wake of the leading bubble, but this configuration
is unstable and the two bubbles eventually tumble about each other. Strikingly
different results are obtained for ellipsoidal bubbles, which form vertical streams due
to a change in the lift force when the bubbles are deformable (Bunner & Tryggvason
2002b).

The effect of void fraction on the kinetic energy spectrum and on the dissipation
rate spectrum is illustrated in figure 21 for Nb = 27. The dissipation rate spectrum
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Figure 19. Kinetic energy spectrum for Nb = 27, α = 6% at three different times. The dotted
vertical lines indicate the wavenumbers corresponding to the mean spacing between the bubbles’
centroids, kd = 3.04, and the bubble diameter, kd = 6.28. The Kolmogorov length scale, not shown,
corresponds to kd = 36.3. Since this simulation was performed on a 1283 grid, the curves should have
64 points from kd = 1.02 to kd = 65.08. However, due to memory restrictions in the postprocessing,
only the first 32 points, from kd = 1.02 to kd = 32.38, are determined.
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Figure 20. Effect of system size on the kinetic energy spectrum at α = 6%, t = 114.4. The dotted
vertical lines indicate the wavenumbers corresponding to the mean spacing between the bubbles’
centroids, kd = 3.04, and the bubble diameter, kd = 6.28. The Kolmogorov length scale, not shown,
corresponds to kd = 36.3.

is defined as D(k) = 2νk2E(k) and satisfies
∑

k D(k)∆k = ε. When the flow reaches
steady state, the maximum in the kinetic energy spectra is at the wavenumber
corresponding to the mean spacing distance between the bubbles, indicating that the
larger contribution to the velocity fluctuations comes from the correlated motion
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Figure 21. Effect of void fraction on the (a) kinetic energy spectrum and (b) dissipation rate
spectrum for Nb = 27. The vertical lines correspond, from left to right, to the mean spacings
between the bubbles’ centroids, which are respectively kd = 2.10, 3.04, 3.85 and 4.86 for α = 2%,
6%, 12% and 24%, and to the bubble diameter, kd = 6.28.

of many bubbles rather than from the summation of the disturbances created by
individual bubbles, as was pointed out by Zenit et al. (2001). As the void fraction
increases, the wavenumber at the maximum of the spectrum increases too. In addition,
the spectrum is shifted upwards because of the increase in kinetic energy of the liquid.
For all cases considered, however, the kinetic energy spectrum decays with the same
slope for kd > 6.28. As remarked in Zenit et al. (2001), this is due to the fact that
the fluctuations at these wavenumbers are produced by structures smaller than the
size of the bubbles. This slope is approximately −3.6 and is added to figures 19, 20
and 21(a). In figure 21(a), the −8/3 slope found in the experiments of Lance &
Bataille (1991) is also shown. The fact that the slope is higher in our results than in
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Figure 22. Probability density function of the liquid velocity fluctuations. (a) α = 2%; (b) α = 6%,
Nb = 27; (c) α = 6%, Nb = 91; (d ) α = 6%, Nb = 216; (e) α = 12%, ( f ) α = 24%.

the experiments of Lance & Bataille (1991) can be attributed to the very different
conditions of our simulations, which are for laminar, low-Reynolds-number bubbly
flows, and their experiments, which were for turbulent, high-Reynolds-number bubbly
flows. Also, there is a considerable amount of uncertainty in the evaluation of the
slope from our results since the data span only a limited range of wavenumbers. In
particular, the fluctuations seen at high wavenumbers in the spectra are due to the
rapid changes in density and velocity across the interface between the outer fluid
and the bubbles. Both slopes are however much larger than the classical −5/3 power
law in the inertial region of single-phase turbulent flows. Lance & Bataille (1991)
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proposed an explanation for the higher slopes seen in bubbly flows. Using arguments
of dimensional analysis and scaling for the spectral energy balance, they showed that
the eddies produced in the wakes of the bubbles are dissipated by viscosity before
any spectral transfer of energy can take place. As a result, the spectral energy balance
reduces to a simple expression, which leads to E ≈ k−3, which is close to their findings
as well as ours.

Finally, the probability density of the liquid velocity fluctuations is plotted in
figure 22. The values are scaled by their standard deviation. The Gaussian curve with
mean zero and standard deviation one is superposed on the plots. The p.d.f.s of the
cross-stream velocities are symmetric with respect to a vertical line going through
the zero point, whereas the vertical velocity curves are tilted towards the region
of negative velocity. The results exhibit considerable differences from the Gaussian
profile, especially at low void fractions. A narrow peak is observed at α = 2%,
which broadens as α increases. This peak is more pronounced for the horizontal
than for the vertical velocity fluctuations. These two observations are consistent with
the experimental findings of Zenit et al. (2001). The reason for the non-Gaussian
p.d.f.s is presumably due to the way the bubbles interact. At low void fractions,
the bubbles interact by the ‘drafting, kissing, and tumbling’ mechanism, where the
bubbles accelerate in the wake of the bubble in the front. This should result in a
relatively narrow range of velocity fluctuations in the liquid. As the void fraction
increases, the presence of other bubbles results in more complex and more random
interactions.

4. Conclusion
This paper is the second part of an investigation of finite Reynolds number bubbly

flows. The Reynolds number lies between 12 and 30, depending on the void fraction,
which varies between 2% and 24%. The effects of viscosity, inertia and surface tension
are all accounted for. Part 1 considered the rise velocity and the microstructure of the
bubbles. Part 2 analyses the properties of the fluctuation velocity of the bubbles and
the liquid-phase turbulence. The major observations are as follows:

(i) The fluctuation velocities of the bubbles and the Reynolds stress in the liquid
increase when the number of bubbles in the periodic cell, Nb, increases. We were not
able to determine the limit values of both quantities, even with Nb = 216.

(ii) The vertical fluctuation velocities of both the bubbles and the liquid are larger
than the horizontal fluctuation velocities. The anisotropy decreases as the void fraction
increases. The variance of the bubble velocities, i.e. the square of the total fluctuation
velocities of the bubbles, and the turbulent kinetic energy scale with αW 2

r , where Wr

is the relative velocity of the bubbles relative to the liquid.
(iii) The self-dispersion of the bubbles can be roughly characterized as Gaussian

with a strongly anisotropic dispersion coefficient tensor. The vertical dispersion co-
efficient is maximum at α = 12%, where it is equal to 1.2aWr . Even though the
results are affected by the small size of the systems, it appears that the dispersion
coefficients in the self-diffusion of bubbles are much smaller than their counterparts
in the self-diffusion of solid particles.

(iv) The kinetic energy spectrum follows a −3.6 power law at large wavenumbers.
This is of the same order as the value of −8/3 seen in the experiments of Lance &
Bataille (1991).

This study shows the feasibility of performing large-scale direct numerical simula-
tions of dispersed multiphase flows to complement experiments and assist in modelling
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by providing a detailed picture of the flow. A study of a monodisperse suspension
of bubbles is a first step in developing a thorough understanding of bubbly flows.
Future studies should consider the effects of polydispersion, surfactants, coalescence,
breakup and higher Reynolds numbers.

One important question is left unanswered by this study: What happens when the
number of bubbles increases beyond Nb = 216? One possibility is the appearance of
large-scale flow structures such as the recirculation loops commonly seen in bubble
columns. We do not believe that this will happen, at least for spherical bubbles
and α 6 12% because the mechanisms of interaction between the bubbles tend to
homogenize their spatial distribution. Nevertheless, larger simulations including more
bubbles are necessary to verify this hypothesis and to obtain results for the fluctuation
velocities and the dispersion coefficients, which are independent of Nb. For highly
deformable bubbles, the interaction mechanisms are different and do lead to the
formation of large-scale flow structures (Bunner & Tryggvason 2002b).
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Sokolichin, A., Eigenberger, G., Lapin, A. & Lübbert, A. 1997 Dynamic numerical simulation of
gas-liquid two-phase flows: Euler-Euler versus Euler-Lagrange. Chem. Engng Sci. 52, 611–626.
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